POULTRY MANURE DRY STACK STRUCTURE ## DESIGN WORKSHEET (THREE WALLS) | Vol = Vol | olume of litter stored | (Form AL-ENG-25E | Item "O."): | : | |-----------|------------------------|------------------|-------------|---| | | | | | | W_b = Width of building: _____ ft. (Use actual inside working dimension; i.e., 39 ft.) H_m = Max height of pile in middle (Max. 7 ft.): _____ ft. H_s = Height of pile at side walls (Max for wooden wall = 4 ft.): _____ ft. H_w = Height of wall (H_s + Freeboard): ______ ft. (Maximum 5 ft.) A_x = Cross sectional area of pile (calculate below). L_{m} = Length on manure pile (calculate below). L_i = Length of building (initial calculation) including FB_e. L_t = Total length; L_i adjusted to account for spacing between side posts. FB_e = Horizontal freeboard from toe of pile to open end of building. If composter occupies this space, let FB_e = length of composter = _____; otherwise FB_e = 12. $$A_X = H_m W_b - 1.5 (H_m - H_s)^2 = (____x ___) - 1.5 (___ - ___)^2 = ___sq. ft.$$ $$L_{\rm m} = {\rm Vol} / {\rm A_x} + (0.75 {\rm H_m}) = (_______) + (0.75 {\rm x} _____) = _____ft.$$ $$L_i = L_m + FB_e =$$ _____ft. Post spacing: _____ft. c-c $L_t = \underline{\hspace{1cm}}$ ft. (NOTE: Round L_i up or down to accommodate post spacing.) Floor area = $W_b \times L_t$ (For W_b use nominal width; i.e., 40 ft.) + Composter Area (See Drawings) Floor area x cost/sq. ft. = Estimated total cost of structure